Learn how to use Machine Learning, Data Science, Matplotlib , NumPy, Plotly , Scikit-Learn , Tensorflow , Pandas, Seaborn , and more!
Machine Learning and Data Science with
Python Masterclass 2021
Learn how to use Machine Learning, Data
Science, Matplotlib , NumPy, Plotly , Scikit-Learn , Tensorflow , Pandas,
Seaborn , and more!
This is an Introduction to Machine Learning and
Data Science with Python Masterclass
After you finish this Introductory Course, you can
enroll in our Comprehensive Machine Learning and Data Science with Python
Masterclass Course.
https://firsteacademy.com/home/course/machine-learning-and-data-science-with-python-masterclass/18
You will learn the following:
This Machine Learning with Python course
dives into the basics of machine learning using Python. You’ll learn about
supervised vs. unsupervised learning, look into how statistical modeling
relates to machine learning, and do a comparison of each.
In this practical, hands-on course you’ll
learn how to program using Python for Data Science and Machine Learning. This
includes data analysis, visualization, and how to make use of that data in a
practical manner.
Our main objective is to give you the
education not just to understand the ins and outs of the Python programming language
for Data Science and Machine Learning, but also to learn exactly how to become
a professional Data Scientist with Python and land your first job.
We’ll go over some of the best and most
important Python libraries for data science such as NumPy, Pandas, and
Matplotlib +
NumPy — A library that makes a variety of
mathematical and statistical operations easier; it is also the basis for many
features of the pandas library.
Pandas — A Python library created
specifically to facilitate working with data, this is the bread and butter of a
lot of Python data science work.
NumPy and Pandas are great for exploring and
playing with data. Matplotlib is a data visualization library that makes graphs
as you’d find in Excel or Google Sheets. Blending practical work with solid
theoretical training, we take you from the basics of Python Programming for
Data Science to mastery.
Python coding experience is either required
or recommended in job postings for data scientists, machine learning engineers,
big data engineers, IT specialists, database developers, and much more. Adding
Python coding language skills to your resume will help you in any one of these
data specializations requiring mastery of statistical techniques.
The course covers 5 main areas:
1: PYTHON FOR DS+ML COURSE INTRO
This intro section gives you a full
introduction to the Python for Data Science and Machine Learning course, data
science industry, and marketplace, job opportunities and salaries, and the
various data science job roles.
Intro to Data Science + Machine Learning with
Python
Data Science Industry and Marketplace
Data Science Job Opportunities
How To Get a Data Science Job
Machine Learning Concepts & Algorithms
2: PYTHON DATA ANALYSIS/VISUALIZATION
This section gives you a full introduction to
the Data Analysis and Data Visualization with Python with hands-on step by step
training.
Python Crash Course
NumPy Data Analysis
Pandas Data Analysis
Matplotlib
Seaborn
Plotly
3: MATHEMATICS FOR DATA SCIENCE
This section gives you a full introduction to
the mathematics for data science such as statistics and probability.
Descriptive Statistics
Measure of Variability
Inferential Statistics
Probability
Hypothesis Testing
4: MACHINE LEARNING
This section gives you a full introduction to
Machine Learning including Supervised & Unsupervised ML with hands-on
step-by-step training.
Intro to Machine Learning
Data Preprocessing
Linear Regression
Logistic Regression
K-Nearest Neighbors
Decision Trees
Ensemble Learning
Support Vector Machines
K-Means Clustering
PCA
5: STARTING A DATA SCIENCE CAREER
This section gives you a full introduction to
starting a career as a Data Scientist with hands-on step by step training.
Creating a Resume
Creating a Cover Letter
Personal Branding
Freelancing + Freelance websites
Importance of Having a Website
Networking
By the end of the course you’ll be a
professional Data Scientist with Python and confidently apply for jobs and feel
good knowing that you have the skills and knowledge to back it up.
Here
is some of What you'll learn:
<!--[if !supportLists]-->·
<!--[endif]-->140+ Python Machine
Learning and Data Science videos
Thank you very much for getting started
with “Master
Python for Machine Learning and Data Science.”
We imagine you are going to love what’s next.
Go Hack’m
Don’t waste your time
REMEMBER…
You will get lifetime access to over 140 lectures.
So, what are you waiting
for? Click the buy button NOW, increase your knowledge, become a
Professional Machine Learning Expert and advance your career all in a fun and
practical way!
Don’t miss this Limited Time
Offer. ACT NOW!
You will
Learn by Practice:
By the end of this
Unique Course, you will go from #Newbie to #Advanced as an #Python_Programmer.
Here is what you’ll learn:
1 Introduction
<!--[if !supportLists]-->1.
<!--[endif]-->Who is this course for
<!--[if !supportLists]-->2.
<!--[endif]-->Data science + machine
learning marketplace
<!--[if !supportLists]-->3.
<!--[endif]-->Data science job
opportunities
<!--[if !supportLists]-->4.
<!--[endif]-->Data science job roles
<!--[if !supportLists]-->5.
<!--[endif]-->What is data scientist
<!--[if !supportLists]-->6.
<!--[endif]-->How to get a data science
job
<!--[if !supportLists]-->7.
<!--[endif]-->Data science projects
overview
2 Data Science and Machine Learning Concepts
<!--[if !supportLists]-->8.
<!--[endif]-->Why we use python
<!--[if !supportLists]-->9.
<!--[endif]-->What is data science
<!--[if !supportLists]-->10.
<!--[endif]-->What is machine learning
<!--[if !supportLists]-->11.
<!--[endif]-->Machine learning concepts
& algorithms
<!--[if !supportLists]-->12.
<!--[endif]-->What is deep learning
<!--[if !supportLists]-->13.
<!--[endif]-->Machine learning vs deep
learning
3 Python For Data Science
<!--[if !supportLists]-->14.
<!--[endif]-->What is programming
<!--[if !supportLists]-->15.
<!--[endif]-->Why python for data
concepts
<!--[if !supportLists]-->16.
<!--[endif]-->What is jupyter
<!--[if !supportLists]-->17.
<!--[endif]-->What is google colab
<!--[if !supportLists]-->18.
<!--[endif]-->Python variables, Booleans
and none
<!--[if !supportLists]-->19.
<!--[endif]-->Getting started with google
colab
<!--[if !supportLists]-->20.
<!--[endif]-->Python operators
<!--[if !supportLists]-->21.
<!--[endif]-->Python numbers &
Booleans
<!--[if !supportLists]-->22.
<!--[endif]-->Python strings
<!--[if !supportLists]-->23.
<!--[endif]-->Python conditional
statements
<!--[if !supportLists]-->24.
<!--[endif]-->Python for loops and while
loops
<!--[if !supportLists]-->25.
<!--[endif]-->Python lists
<!--[if !supportLists]-->26.
<!--[endif]-->More about lists
<!--[if !supportLists]-->27.
<!--[endif]-->Python tuples
<!--[if !supportLists]-->28.
<!--[endif]-->Python dictionaries
<!--[if !supportLists]-->29.
<!--[endif]-->Python sets
<!--[if !supportLists]-->30.
<!--[endif]-->Compound datatypes &
when to use each one
<!--[if !supportLists]-->31.
<!--[endif]-->Python functions
<!--[if !supportLists]-->32.
<!--[endif]-->Object oriented programming
in python
4 Statistics for Data Science
<!--[if !supportLists]-->33.
<!--[endif]-->Intro to statistics
<!--[if !supportLists]-->34.
<!--[endif]-->Descriptive statistics
<!--[if !supportLists]-->35.
<!--[endif]-->Measure of variability
<!--[if !supportLists]-->36.
<!--[endif]-->Measure of variability
continued
<!--[if !supportLists]-->37.
<!--[endif]-->Measure of variability
relationship
<!--[if !supportLists]-->38.
<!--[endif]-->Inferential statistics
<!--[if !supportLists]-->39.
<!--[endif]-->Measure of asymmetry
<!--[if !supportLists]-->40.
<!--[endif]-->Sampling distribution
5 Probability & Hypothesis Testing
<!--[if !supportLists]-->41.
<!--[endif]-->What is exactly is
probability
<!--[if !supportLists]-->42.
<!--[endif]-->Expected values
<!--[if !supportLists]-->43.
<!--[endif]-->Relative frequency
<!--[if !supportLists]-->44.
<!--[endif]-->Hypothesis testing overview
6 NumPy Data Analysis
<!--[if !supportLists]-->45.
<!--[endif]-->Intro numpy array datatypes
( 1.1 NumPy Basics PDF )
<!--[if !supportLists]-->46.
<!--[endif]-->Numpy arrays
<!--[if !supportLists]-->47.
<!--[endif]-->Numpy arrays basics
<!--[if !supportLists]-->48.
<!--[endif]-->Numpy array Indexing
<!--[if !supportLists]-->49.
<!--[endif]-->Numpy array computations
<!--[if !supportLists]-->50.
<!--[endif]-->Broadcasting
7 Pandas Data Analysis
<!--[if !supportLists]-->51.
<!--[endif]-->Introduction to pandas (1.1
Pandas & 1.2 Pandas Basics PDF )
<!--[if !supportLists]-->52.
<!--[endif]-->Introduction to pandas
continues
8 Python Data Visualization
<!--[if !supportLists]-->53.
<!--[endif]-->Data Visualization Overview
<!--[if !supportLists]-->54.
<!--[endif]-->Different Data
Visualization Libraries in Python
<!--[if !supportLists]-->55.
<!--[endif]-->Python Data Visualization
Implementation
9 Machine Learning
<!--[if !supportLists]-->56.
<!--[endif]-->Introduction To Machine
Learning (1.1 Supervised Learning PDF )
10 Data Loading & Exploration
<!--[if !supportLists]-->57.
<!--[endif]-->Exploratory Data Analysis
11 Data Cleaning
<!--[if !supportLists]-->58.
<!--[endif]-->Feature scaling
<!--[if !supportLists]-->59.
<!--[endif]-->Data cleaning
12 Feature Selecting and Engineering
<!--[if !supportLists]-->60.
<!--[endif]-->Feature Engineering
13 Linear and Logistic Regression
<!--[if !supportLists]-->61.
<!--[endif]-->Linear Regression Intro
<!--[if !supportLists]-->62.
<!--[endif]-->Gradient Descent
<!--[if !supportLists]-->63.
<!--[endif]-->Linear Regression +
Correlation Methods
<!--[if !supportLists]-->64.
<!--[endif]-->Linear Regression
Implementation
<!--[if !supportLists]-->65.
<!--[endif]-->Logistic Regression
14 K Nearest Neighbors
<!--[if !supportLists]-->66.
<!--[endif]-->KNN Overview
<!--[if !supportLists]-->67.
<!--[endif]-->Parametric vs
non-parametric models
<!--[if !supportLists]-->68.
<!--[endif]-->EDA on Iris Dataset
<!--[if !supportLists]-->69.
<!--[endif]-->The KNN Intuition
<!--[if !supportLists]-->70.
<!--[endif]-->Implement the KNN algorithm
from scratch
<!--[if !supportLists]-->71.
<!--[endif]-->Compare the result with the
sklearn library
<!--[if !supportLists]-->72.
<!--[endif]-->Hyperparameter tuning using
the cross-validation
<!--[if !supportLists]-->73.
<!--[endif]-->The decision boundary
visualization
<!--[if !supportLists]-->74.
<!--[endif]-->Manhattan vs Euclidean
Distance
<!--[if !supportLists]-->75.
<!--[endif]-->Feature scaling in KNN
<!--[if !supportLists]-->76.
<!--[endif]-->Curse of dimensionality
<!--[if !supportLists]-->77.
<!--[endif]-->KNN use cases
<!--[if !supportLists]-->78.
<!--[endif]-->KNN pros and cons
15 Decision Trees
<!--[if !supportLists]-->79.
<!--[endif]-->Decision Trees Section
Overview
<!--[if !supportLists]-->80.
<!--[endif]-->EDA on Adult Dataset
<!--[if !supportLists]-->81.
<!--[endif]-->What is Entropy and
Information Gain
<!--[if !supportLists]-->82.
<!--[endif]-->The Decision Tree ID3
algorithm from scratch Part 1
<!--[if !supportLists]-->83.
<!--[endif]-->The Decision Tree ID3
algorithm from scratch Part 2
<!--[if !supportLists]-->84.
<!--[endif]-->The Decision Tree ID3
algorithm from scratch Part 3
<!--[if !supportLists]-->85.
<!--[endif]-->ID3 - Putting Everything
Together
<!--[if !supportLists]-->86.
<!--[endif]-->Evaluating our ID3
implementation
<!--[if !supportLists]-->87.
<!--[endif]-->Compare with Sklearn
implementation
<!--[if !supportLists]-->88.
<!--[endif]-->Visualizing the tree
<!--[if !supportLists]-->89.
<!--[endif]-->Plot the features
importance
<!--[if !supportLists]-->90.
<!--[endif]-->Decision Trees
Hyper-parameters
<!--[if !supportLists]-->91.
<!--[endif]-->Pruning
<!--[if !supportLists]-->92.
<!--[endif]-->[Optional] Gain Ration
<!--[if !supportLists]-->93.
<!--[endif]-->Decision Trees Pros and
Cons
<!--[if !supportLists]-->94.
<!--[endif]-->[Project] Predict whether
income exceeds $50Kyr – Overview
16 Ensemble Learning and Random Forests
<!--[if !supportLists]-->95.
<!--[endif]-->Ensemble Learning Section
Overview
<!--[if !supportLists]-->96.
<!--[endif]-->What is Ensemble Learning
<!--[if !supportLists]-->97.
<!--[endif]-->What is Bootstrap Sampling
<!--[if !supportLists]-->98.
<!--[endif]-->What is Bagging
<!--[if !supportLists]-->99.
<!--[endif]-->Out-of-Bag Error (OOB
Error)
<!--[if !supportLists]-->100.
<!--[endif]-->Implementing Random Forests
from scratch Part 1
<!--[if !supportLists]-->101.
<!--[endif]-->Implementing Random Forests
from scratch Part 2
<!--[if !supportLists]-->102.
<!--[endif]-->Compare with sklearn
implementation
<!--[if !supportLists]-->103.
<!--[endif]-->Random Forests
Hyper-Parameters
<!--[if !supportLists]-->104.
<!--[endif]-->Random Forests Pros and
Cons
<!--[if !supportLists]-->105.
<!--[endif]-->What is Boosting
<!--[if !supportLists]-->106.
<!--[endif]-->AdaBoost Part 1
<!--[if !supportLists]-->107.
<!--[endif]-->AdaBoost Part 2
17 Support Vector Machines
<!--[if !supportLists]-->108.
<!--[endif]-->SVM Outline
<!--[if !supportLists]-->109.
<!--[endif]-->SVM intuition
<!--[if !supportLists]-->110.
<!--[endif]-->Hard vs Soft Margins
<!--[if !supportLists]-->111.
<!--[endif]-->C hyper-parameter
<!--[if !supportLists]-->112.
<!--[endif]-->Kernel Trick
<!--[if !supportLists]-->113.
<!--[endif]-->SVM - Kernel Types
<!--[if !supportLists]-->114.
<!--[endif]-->SVM with Linear Dataset
(Iris)
<!--[if !supportLists]-->115.
<!--[endif]-->SVM with Non-linear Dataset
<!--[if !supportLists]-->116.
<!--[endif]-->SVM with Regression
<!--[if !supportLists]-->117.
<!--[endif]-->SMV - Project Overview
18 K-means
<!--[if !supportLists]-->118.
<!--[endif]-->Unsupervised Machine
Learning Intro
<!--[if !supportLists]-->119.
<!--[endif]-->Unsupervised Machine
Learning Continued
<!--[if !supportLists]-->120.
<!--[endif]-->Representing Clusters
19 PCA
<!--[if !supportLists]-->121.
<!--[endif]-->PCA Section Overview
<!--[if !supportLists]-->122.
<!--[endif]-->What is PCA
<!--[if !supportLists]-->123.
<!--[endif]-->PCA Drawbacks
<!--[if !supportLists]-->124.
<!--[endif]-->PCA Algorithm Steps
(Mathematics)
<!--[if !supportLists]-->125.
<!--[endif]-->Covariance Matrix vs SVD
<!--[if !supportLists]-->126.
<!--[endif]-->PCA - Main Applications
<!--[if !supportLists]-->127.
<!--[endif]-->PCA - Image Compression
<!--[if !supportLists]-->128.
<!--[endif]-->PCA - Data Preprocessing
<!--[if !supportLists]-->129.
<!--[endif]-->PCA - Biplot and the Screen
Plot
<!--[if !supportLists]-->130.
<!--[endif]-->PCA - Feature Scaling and
Screen Plot
<!--[if !supportLists]-->131.
<!--[endif]-->PCA - Supervised vs
Unsupervised
<!--[if !supportLists]-->132.
<!--[endif]-->PCA – Visualization
20 Data Science Career
<!--[if !supportLists]-->133.
<!--[endif]-->Creating A Data Science
Resume
<!--[if !supportLists]-->134.
<!--[endif]-->Data Science Cover Letter
<!--[if !supportLists]-->135.
<!--[endif]-->How to Contact Recruiters
<!--[if !supportLists]-->136.
<!--[endif]-->Getting Started with
Freelancing
<!--[if !supportLists]-->137.
<!--[endif]-->Top Freelance Websites
<!--[if !supportLists]-->138.
<!--[endif]-->Personal Branding
<!--[if !supportLists]-->139.
<!--[endif]-->Networking Do's and Don'ts
<!--[if !supportLists]-->140.
<!--[endif]-->Importance of a Website
21 Additional Content: Grand Finale
<!--[if !supportLists]-->141.
<!--[endif]-->Bonus Lectures. Enjoy the
Benefits
You could also end
up using these skills in your work for Your #Clients, and much more.
We
really hope you find this course valuable, but either way, please leave a
review and share your experience...
Firste
Academy is an online learning platform with online top best online courses taught by the
world's best instructors. Personalized, on-demand e-learning in programming,
marketing, data science, development and more.
Write a public review